Algebraic Structures | Solving the Matrix Commutator MX = XM | Which of the Matrix in A belongs to B ?

Algebraic Structures | Question-1

Algebraic Structures | Question-1

Problem Statement:

Let \( A \) be the set of \( 2 \times 2 \) matrices with real number entries.

Given:

\[M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\]

\[B = \{ X \in A \mid MX = XM \}\]

Determine which of the following matrices in \( A \) belong to \( B \):

\( \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \)
\( \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \)
\( \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \)
\( \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)
\( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)
\( \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \)

Solution

1

Define the general form of \( X \):

Let \( X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), where \( a, b, c, d \in \mathbb{R} \).

We need to find conditions on \( a, b, c, d \) such that \( MX = XM \).

2

Compute \( MX \) and \( XM \):

Compute \( MX \):

\[ MX = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a + c & b + d \\ c & d \end{pmatrix} \]

Compute \( XM \):

\[ XM = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & a + b \\ c & c + d \end{pmatrix} \]

3

Set \( MX = XM \) and derive conditions:

Equality Conditions:

From \( MX = XM \), we have:

\[ \begin{pmatrix} a + c & b + d \\ c & d \end{pmatrix} = \begin{pmatrix} a & a + b \\ c & c + d \end{pmatrix} \]

Equating corresponding entries gives:

  1. \( a + c = a \Rightarrow c = 0 \)
  2. \( b + d = a + b \Rightarrow d = a \)
  3. \( c = c \) (automatically satisfied)
  4. \( d = c + d \Rightarrow c = 0 \) (already satisfied)

Therefore, \( X \) commutes with \( M \) if and only if:

\[ \boxed{c = 0 \quad \text{and} \quad d = a} \]

The general form of matrices in \( B \) is:

\[ X = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, \quad a,b \in \mathbb{R} \]

4

Test each given matrix against the conditions:

We check each matrix for \( c = 0 \) and \( d = a \):

Matrix 1: \( \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \)

\( a=1, b=1, c=0, d=1 \)

Check: \( c=0 \) ✅, \( d=a \) ✅ (1 = 1)

✅ Belongs to \( B \)

Matrix 2: \( \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \)

\( a=1, b=1, c=1, d=1 \)

Check: \( c=0 \) ❌ (1 ≠ 0)

❌ Does not belong to \( B \)

Matrix 3: \( \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \)

\( a=0, b=0, c=0, d=0 \)

Check: \( c=0 \) ✅, \( d=a \) ✅ (0 = 0)

✅ Belongs to \( B \)

Matrix 4: \( \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)

\( a=1, b=1, c=1, d=0 \)

Check: \( c=0 \) ❌ (1 ≠ 0)

❌ Does not belong to \( B \)

Matrix 5: \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)

\( a=1, b=0, c=0, d=1 \)

Check: \( c=0 \) ✅, \( d=a \) ✅ (1 = 1)

✅ Belongs to \( B \)

Matrix 6: \( \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \)

\( a=0, b=1, c=1, d=0 \)

Check: \( c=0 \) ❌ (1 ≠ 0)

❌ Does not belong to \( B \)

Conclusion

A matrix \( X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) belongs to \( B \) if and only if it satisfies:

\[ c = 0 \quad \text{and} \quad d = a \]

Final Answer:

Matrices in \( B \):

  • \( \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \)
  • \( \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \)
  • \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)

Matrices not in \( B \):

  • \( \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \)
  • \( \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)
  • \( \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \)

Summary: Out of the 6 given matrices, 3 satisfy the commuting condition \( MX = XM \) and belong to \( B \).

Scroll to Top
logo
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.